Daigao Chen 1,2†Hongguang Zhang 1†Min Liu 1Xiao Hu 1,2[ ... ]Xi Xiao 1,2,3,*
Author Affiliations
Abstract
1 National Information Optoelectronics Innovation Center, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
2 State Key Laboratory of Optical Communication Technologies and Networks, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
3 Peng Cheng Laboratory, Shenzhen 518055, China
A light-trapping-structure vertical Ge photodetector (PD) is demonstrated. In the scheme, a 3 μm radius Ge mesa is fabricated to constrain the optical signal in the circular absorption area. Benefiting from the light-trapping structure, the trade-off between bandwidth and responsivity can be relaxed, and high opto-electrical bandwidth and high responsivity are achieved simultaneously. The measured 3 dB bandwidth of the proposed PD is around 67 GHz, and the responsivity is around 1.05 A/W at wavelengths between 1520 and 1560 nm. At 1580 nm, the responsivity is still over 0.78 A/W. A low dark current of 6.4 nA is also achieved at -2 V bias voltage. Based on this PD, a clear eye diagram of 100 GBaud four-level pulse amplitude modulation (PAM-4) is obtained. With the aid of digital signal processing, 240 Gb/s PAM-4 signal back-to-back transmission is achieved with a bit error ratio of 1.6×10-2. After 1 km and 2 km fiber transmission, the highest bit rates are 230 and 220 Gb/s, respectively.
Photonics Research
2022, 10(9): 2165
Author Affiliations
Abstract
1 Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
2 State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3 Institute for Energy Efficiency, University of California Santa Barbara, Santa Barbara, California 93106, USA
4 Electrical and Computer Engineering Department, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
5 Wuhan National Laboratory for Optoelectronics & School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
6 National Information Optoelectronics Innovation Center, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
7 State Key Laboratory of Optical Communication Technologies and Networks, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
8 Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
In recent years, optical modulators, photodetectors, (de)multiplexers, and heterogeneously integrated lasers based on silicon optical platforms have been verified. The performance of some devices even surpasses the traditional III-V and photonic integrated circuit (PIC) platforms, laying the foundation for large-scale photonic integration. Silicon photonic technology can overcome the limitations of traditional transceiver technology in high-speed transmission networks to support faster interconnection between data centers. In this article, we will review recent progress for silicon PICs. The first part gives an overview of recent achievements in silicon PICs. The second part introduces the silicon photonic building blocks, including low-loss waveguides, passive devices, modulators, photodetectors, heterogeneously integrated lasers, and so on. In the third part, the recent progress on high-capacity silicon photonic transceivers is discussed. In the fourth part, we give a review of high-capacity silicon photonic networks on chip.
Photonics Research
2022, 10(9): A106
Yuguang Zhang 1,2†Hongguang Zhang 2†Junwen Zhang 3†Jia Liu 2[ ... ]Shaohua Yu 1,2,4
Author Affiliations
Abstract
1 State Key Laboratory of Optical Communication Technologies and Networks, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
2 National Information Optoelectronics Innovation Center, Wuhan 430074, China
3 Key Laboratory of Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai 200433, China
4 Peng Cheng Laboratory, Shenzhen 518055, China
An ultrafast microring modulator (MRM) is fabricated and presented with Vπ·L of 0.825 V·cm. A 240 Gb/s PAM-8 signal transmission over 2 km standard single-mode fiber (SSMF) is experimentally demonstrated. PN junction doping concentration is optimized, and the overall performance of the MRM is improved. Optical peaking is introduced to further extend the EO bandwidth from 52 to 110 GHz by detuning the input wavelength. A titanium nitride heater with 0.1 nm/mW tuning efficiency is implemented above the MRM to adjust the resonant wavelength. High bit rate modulations based on the high-performance and compact MRM are carried out. By adopting off-line signal processing in the transmitter and receiver side, 120 Gb/s NRZ, 220 Gb/s PAM-4, and 240 Gb/s PAM-8 are measured with the back-to-back bit error ratio (BER) of 5.5×10-4, 1.5×10-2, and 1.4×10-2, respectively. A BER with different received optical power and 2 km SSMF transmission is also investigated. The BER for 220 Gb/s PAM-4 and 240 Gb/s PAM-8 after 2 km SSMF transmission is calculated to be 1.7×10-2 and 1.5×10-2, which meet with the threshold of soft-decision forward-error correction, respectively.
Photonics Research
2022, 10(4): 04001127
Author Affiliations
Abstract
1 National Information Optoelectronics Innovation Center, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
2 State Key Laboratory of Optical Communication Technologies and Networks, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
3 Accelink Technologies Co., Ltd., Wuhan 430205, China
4 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
5 Center of Material Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
6 e-mail: xxiao@wri.com.cn
7 e-mail: qinan@semi.ac.cn
We demonstrate the optical transmission of an 800 Gbit/s (4×200 Gbit/s) pulse amplitude modulation-4 (PAM-4) signal and a 480 Gbit/s (4×120 Gbit/s) on–off-keying (OOK) signal by using a high-bandwidth (BW) silicon photonic (SiP) transmitter with the aid of digital signal processing (DSP). In this transmitter, a four-channel SiP modulator chip is co-packaged with a four-channel driver chip, with a measured 3 dB BW of 40 GHz. DSP is applied in both the transmitter and receiver sides for pre-/post-compensation and bit error rate (BER) calculation. Back-to-back (B2B) BERs of the PAM-4 signal and OOK signal are first measured for each channel of the transmitter with respect to a variety of data rates. Similar BER performance of four channels shows good uniformity of the transmitter between different channels. The BER penalty of the PAM-4 and OOK signals for 500 m and 1 km standard single-mode fiber (SSMF) transmission is then experimentally tested by using one channel of the transmitter. For a 200 Gbit/s PAM-4 signal, the BER is below the hard-decision forward error correction (HD-FEC) threshold for B2B and below the soft-decision FEC (SD-FEC) threshold after 1 km transmission. For a 120 Gbit/s OOK signal, the BER is below SD-FEC threshold for B2B. After 500 m and 1 km transmission, the data rate of the OOK signal shrinks to 119 Gbit/s and 118 Gbit/s with the SD-FEC threshold, respectively. Finally, the 800 Gbit/s PAM-4 signal with 1 km transmission is achieved with the BER of all four channels below the SD-FEC threshold.
Photonics Research
2020, 8(11): 11001776

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!